Supraspinal fatigue after normoxic and hypoxic exercise in humans
نویسندگان
چکیده
Inadequate cerebral O₂ availability has been proposed to be an important contributing factor to the development of central fatigue during strenuous exercise. Here we tested the hypothesis that supraspinal processes of fatigue would be increased after locomotor exercise in acute hypoxia compared to normoxia, and that such change would be related to reductions in cerebral O₂ delivery and tissue oxygenation. Nine endurance-trained cyclists completed three constant-load cycling exercise trials at ∼80% of maximal work rate: (1) to the limit of tolerance in acute hypoxia; (2) for the same duration but in normoxia (control); and (3) to the limit of tolerance in normoxia. Throughout each trial, prefrontal cortex tissue oxygenation and middle cerebral artery blood velocity (MCAV) were assessed using near-infrared spectroscopy and trans-cranial Doppler sonography, respectively. Cerebral O₂ delivery was calculated as the product of arterial O₂ content and MCAV. Before and immediately after each trial, twitch responses to supramaximal femoral nerve stimulation and transcranial magnetic stimulation were obtained to assess neuromuscular and cortical function, respectively. Exercise time was reduced by 54%in hypoxia compared to normoxia (3.6 ± 1.3 vs. 8.1 ± 2.9 min; P<0.001). Cerebral O₂ delivery,cerebral oxygenation and maximum O₂ uptake were reduced whereas muscle electromyographic activity was increased in hypoxia compared to control (P <0.05).Maximum voluntary force and potentiated quadriceps twitch force were decreased below baseline after exercise in each trial;the decreases were greater in hypoxia compared to control (P<0.001), but were not different in the exhaustive trials (P>0.05). Cortical voluntary activation was also decreased after exercise in all trials, but the decline in hypoxia (Δ18%) was greater than in the normoxic trials (Δ5-9%)(P <0.05). The reductions in cortical voluntary activation were paralleled by reductions in cerebral O₂ delivery. The results suggest that curtailment of exercise performance in acute severe hypoxia is due, in part, to failure of drive from the motor cortex, possibly as a consequence of diminished O₂ availability in the brain.
منابع مشابه
Central and Peripheral Determinants of Fatigue in Acute Hypoxia
Goodall S, Gonzaléz-Alonso J, Ross EZ & Romer LM. (2011). Supraspinal fatigue after hypoxic and normoxic exercise in humans. Med Sci Sports Exerc (in press). Goodall S, Ross EZ, Phillips D & Romer LM. Effect of graded hypoxia on the supraspinal contributions to fatigue. Proceedings of the 65 th Annual Meeting of the Japanese Society of Physical Fitness and Sports Medicine, 2010, p 164. Goodall ...
متن کاملThe effect of twelve session high intensity interval training in haypoxic and normoxic conditions on anaerobic performance in athletes
The aim of the present research is comparing the effectof periodic trainingin hypoxic and normoxic conditions on anaerobic performance of athletes .Subjects of this research were 16 male volunteer students.Subjects were divided to two groups of eight by exercising in hypoxic condition(H 3300) normocytic.Anaerobic performance (peak power, average power) through the Wingate test and lactate conce...
متن کاملTHE EFFECT OF ARTERIAL O2 SATURATION AND HE ART RATE ON BLOOD PRESSURE DURING HYPOXIA
A periodic increase in blood pressure (BP) occurs during apneic episodes in patients with obstructive sleep apnea (OSA). Several factors including hypoxemia and an increase in heart rate (HR) were reported to be responsible for this increased BP. To examine the contribution of these two factors in increasing BP, 35 healthy male subjects (mean age±SD= 23.64±3.80) were studied in three experi...
متن کاملEffect of acute hypoxia on respiratory muscle fatigue in healthy humans
BACKGROUND Greater diaphragm fatigue has been reported after hypoxic versus normoxic exercise, but whether this is due to increased ventilation and therefore work of breathing or reduced blood oxygenation per se remains unclear. Hence, we assessed the effect of different blood oxygenation level on isolated hyperpnoea-induced inspiratory and expiratory muscle fatigue. METHODS Twelve healthy ma...
متن کاملSustained Hypoxic Pulmonary Vasoconstriction in the Isolated Perfused Rat Lung: Effect of α1-adrenergic Receptor Agonist
Background: Alveolar hypoxia induces monophasic pulmonary vasoconstriction in vivo, biphasic vasoconstriction in the isolated pulmonary artery, and controversial responses in the isolated perfused lung. Pulmonary vascular responses to sustained alveolar hypoxia have not been addressed in the isolated perfused rat lung. In this study, we investigated the effect of sustained hypoxic ventilation o...
متن کامل